		STUDY MODULE D	ESCRIPTION FORM		
Name of the module/subject Theory of elasticity, plasticity and rheology			Code 1010115111010116019		
Field of Civil		ramural Second-cycle	Profile of study (general academic, practical) (brak)	Year /Semester	
Elective	path/specialty		Subject offered in:	Course (compulsory, elective)	
	Struc	tural Engineering	Polish	obligatory	
Cycle of	study:		Form of study (full-time,part-time)		
Second-cycle studies			part-time		
No. of h	ours			No. of credits	
Lectur	e: 18 Classes	s: 18 Laboratory: -	Project/seminars:	- 3	
Status c	-	program (Basic, major, other)	(university-wide, from another fi		
		(brak)	(brak)	
Educatio	on areas and fields of sci	ence and art		ECTS distribution (number and %)	
prof ema tel. (Wyc	onsible for subje . dr hab. inż. Mieczysł .il: mieczyslaw.kuczma 61 665-2155 Iział Budownictwa i In Piotrowo 5, 60-965 Poz	aw Kuczma, full prof. a@put.poznan.pl żynierii Środowiska			
	· · · · · · · · · · · · · · · · · · ·	s of knowledge, skills an	d social competencies:		
1	Knowledge	Has basic knowledge of mathen structural mechanics, such as co similar types of studies that finis	overed in the Civil/Structural Eng	gineering Studies or other	
2	Skills		anical problems in mathematical terms and of solving algebraic h appear in typical problems of theoretical mechanics, strength		
3	Social competencies	Is aware of the necessity of lifelo and skills.	ong learning in order to expand	und update his/her knowledge	
Assu	mptions and obj	ectives of the course:			
	acquisition of skills, a nts.	wledge of the mechanics of mater II of which are essential for solving mes and reference to the	g typical problems in the stress-	strength analysis of structural	
Know	/ledge:				
1. Knov		sical interpretation of stress and s	train tensors and their use in str	ess-strength analysis of	
		tive laws in elasticity and plasticit	y of materials - [K_W04]		
	•	theorem of minimum potential ene		ng to it - [K_W03]	
4. Knov [K_W0		tatic analysis methods of two-dim	ensional problems (plain state o	f stress or strain, disks) -	
		tatic analysis methods of thin plate			
	erstands the specifics s of bar structures - [of elasto-plastic material behavio	ur and knows methods of ultima	te load-carrying capacity	
Skills		ı∧_vv∪J, ı∧_vv∪4j			
		e differential equilibrium equation	s of a material continuum - IK	U041	
	pable of calculating th	ne components of strain and stres			
-	-	ne components of strain and stres	s tensors by the generalized Ho	oke`a law - [K_U04]	
	-	lane stress or plain strain problem		. – ,	
5. Is ca	pable of calculating th	ne internal forces and displacement	nts in elastic plates - [K_U04]		
6. Is ca	pable of predicting ult	imate load-bearing capacity of be	ams and simple frame structure	s - [K_U04]	

Social competencies:

1. Is aware of the responsibility for the correctness of conducted analyses and of the need of verifying adopted assumptions and obtained results - $[K_K02]$

- 2. Sees the necessity of systematic expanding und updating his/her knowledge and skills $\,$ [K_K06] $\,$
- 3. Understands the need of teamwork in solving theoretical and practical problems [K_K01]

Assessment methods of study outcomes

Lectures A 90-minute final written test which encompasses two parts; its date is given at the beginning of the semester. The aim of Part 1 is to check knowledge; it consists in answering 4 questions. The aim of Part 2 is to check skills; it consists in solving 2 computation problems. Classes A 90-minute final written test in the last week of the semester. The test consists in solving 3 computation problems. Evaluation of students` activity during classes. Grading scale: >=90% - 5,0 (very good) >=85% - 4,5 (good plus) >=75% - 4,0 (good) >=65% - 3,5 (sufficient plus) >=55% - 3,0 (sufficient, pass) <54% - 2,0 (failure). **Course description** 1. Elements of vector and tensor calculus. 2. State of stress - tensor of stress. Principle values and principle directions of tensor. 3. State of strain - tensor of strain. Strain compatibility equations. 4. Hooke's law - constitutive equations of elasticity. 5. Theorem of minimum potential energy. Virtual work equation. Lame's equations. Beltrami-Michell equations. 6. Analysis of plane state problems (plane stress, plane strain, disks). 7. Fundamentals of thin plates. 8. Calculation of internal forces and displacements in plates. 9. Constitutive relations of plasticity. Yield criteria of Tresca and of Huber-Mises-Hencky. 10. Fundamentals of ultimate load-bearing capacity analysis of structures. **Basic bibliography:** Additional bibliography: Result of average student's workload Time (working Activity hours) 20 1. Participation in lectures 10 2. Participation in classes 3. Participation in consultations, i.e. chosen after class discussions referring to the given subject 1 9 4. Study for the final test (classes) 5. Study for the final test (lectures) 20 Student's workload Source of workload **ECTS** hours

Total workload

75

3

Contact hours	31	1
Practical activities	10	1